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An isolated strip of anomalous vorticity in a two-dimensional, inviscid, incom- 
pressible, unbounded fluid is linearly unstable - or is i t ?  It is pointed out that an 
imposed uniform shear, opposing the shear due to  the isolated strip alone, can 
prevent all linear instabilities if the imposed shear is of sufficient strength, and that 
this is highly relevant to current thinking about ‘two-dimensional turbulence ’ and 
related problems. The linear stability result has been known and goes back to 
Rayleigh, but its implications for the behaviour of the thin strips of vorticity that are 
a ubiquitous feature of nonlinear two-dimensional flows, as revealed for instance 
in high-resolution experiments, appear not to have been widely recognized. In 
particular, these thin strips, or filaments, almost always behave quasi-passively 
when being wrapped around intense coherent vortices, and do not roll up into strings 
of miniature vortices as would an isolated strip. Nonlinear calculations presented 
herein furthermore show that substantially less adverse shear than suggested by 
linear theory is required to preserve a strip of vorticity. Taken together, and in 
conjunction with results showing the further stabilizing effect of a large-scale strain 
field, these results explain the observed quasi-passive behaviour. 

1. Introduction 
Recent very high-resolution laboratory and numerical experiments of two- 

dimensional flow (Couder & Basdevant 1986; Benzi, Patarnello & Santangello 1987 ; 
Brachet et al. 1987; Dritschel 1988a, b,  c ;  Juckes & McIntyre 1987; Legras, 
Santangello & Benzi 1988 ; Melander, MeWilliams & Zabusky 1987 a ;  Melander, 
Zabusky st McWilliams 1987b, c) have demonstrated more clearly than ever before 
the formation and long-time persistence of thin strips, or filaments, of anomalous 
vorticity. Such strips or filaments are apparently a ubiquitous feature of very high 
Reynolds number, unsteady two-dimensional vortical flow, and of analogous three- 
dimensional stably stratified flows that are commonplace in the Earth’s atmosphere 
and other naturally occurring bodies of fluid. 

The persistence of these strips might be thought to contradict the familiar classical 
linear stability result (Rayleigh 1894, 1945) that demonstrates the instability of an 
isolated strip of uniform vorticity. Furthermore, experiments and calculations of the 
nonlinear evolution of a shear layer (a strip of anomalous vorticity) show that the 
layer develops into a string of vortices that subsequently pair repeatedly (Thorpe 
1968; Winant & Browand 1974; Saffman & Baker 1979; Aref & Siggia 1980; 
Pierrehumbert & Widnall 1981 ; Aref 1983; Ho & Huerre 1984; Pozrikidis & Higdon 
1985; Pullin & Jacobs 1986, among others.) This behaviour, however, is almost never 
observed in the experiments first cited. 
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In those experiments, thin strips of vorticity are almost always created when 
coherent vortices strongly interact. Strong interactions include vortex merging 
(Melander et ul. 1987b, c ;  Dritschel 1988a), ‘binding’ of opposite-signed vorticity 
(Overman & Zabusky 1982 ; Couder & Basdevant 1986), ‘axisymmetrization ’ of 
sufficiently non-circular distributions of vorticity (Melander et al. 1987 a ; Dritschel 
1 9 8 8 ~ ;  Dritschel & Legras 1989), the deformation and elongation of small vortices 
by the strain field of larger, more intense vortices (Moore & Saffmari 1971; Kida 
1981; Neu 1984; Dritschel 1989), and unsteady external forcing (sce c.8. the 
stratospheric model of Juckes & McIntyre 1987). In  many circumstances, strips then 
thin under the action of the strain arising from the presence of a nearby vortex, 
because the part of a strip closest to the vortex is swept around the vortex morc 
rapidly than the parts further out (e.g. see figure 1 ) .  

Thus, one possible explanation for the persistence of thin strips could be that the 
strain field stretches the strip fast enough to prevent the growth of instabilities. In 
a companion paper, Dritschel et al. (19891, i t  is shown that a weak uniform strain, 
whose extensional axis lies along the centreline of an undisturbed strip of uniform 
vorticity, can indeed suppress instabilities (see also Dhanak 1981 & references). A 
strain rate of only 7 % of the vorticity maximum is sufficient to keep the steepness 
of a disturbance from growing by more than a factor of e. 

In  general, however, the strain field is neither constant in time, nor does the 
extensional axis of strain remain precisely parallel with the strips of vorticity. As a 
strip of vorticity stretches under the action of differential rotation about an intense 
vortex, the strip also becomes less and less aligned with the extensional axis of strain 
(e.g. see figure 1 ) .  The rate of stretching by strain thereby diminishes continually, 
and eventually the stretching is no longer sufficient to prevent instabilities, a t  least 
by the mechanism discussed above (for quantitative results, see Dritschel et al. 1989). 

Although the stretching effect diminishes, thin strips of vorticity continue to be 
strongly influenced by differential rotation about the vortex. In itself, this tends to 
make the inner ‘edge’ of the strip rotate faster than the outer, because the 
circumferential velocity decreases with increasing distance from the vortex. This 
shearing motion induced by the main vortex opposes the self-induced shearing 
motion of the strip, so that the net shear across the strip is reduced or even reversed. 

The purpose of this paper is to show that this adverse shear is likely to be the main 
factor responsible for the observed persistence or stability of thin strips of vorticity 
being wrapped around intense coherent vortices. The following section reviews the 
classical linear stability results of Rayleigh (1945, vol. 2, p. 388) without and with 
adverse shear, and takes them further by examining the effect of weak adverse shear 
on the strength and nature of the instabilities. In 53, the sensitivity of the stability 
properties to the distribution of vorticity across the strip is addressed. Thin circular 
strips are considered in $4 just to make sure that geometrical effects do not alter the 
results of the previous two sections significantly. In  $ 5 ,  the linear stability results are 
connected with the long-established ‘ inflection-point ’ theorems of Rayleigh (1894), 
Fjortoft (1950), and Arnol’d (1965). In $6,  the nonlinear evolution of small, linearly 
unstable disturbances is examined. The evolution is shown to fall into several 
qualitatively different regimes depending on the value of the adverse shear. In  
particular, an adverse shear of between about two-thirds and unity times the 
vorticity within the strip can prevent disruption of the strip even though it does not 
suppress the primary linear instability (on the assumption that subharmonics are 
unimportant). The most unstable linear disturbance amplifies a t  first but then 
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returns, repeatedly, close to its initial amplitude. Remarkably, wave breaking and 
filamentation appear to be completely, or almost completely, suppressed. 

A discussion, including wider implications, is given in $7.  

2. The stability of a strip of uniform vorticity 
The classic problems solved by Rayleigh are now described. In  the case of no 

imposed adverse shear, the equilibrium configuration is defined as a region of uniform 
vorticity w bounded by the two lines y = &$A beyond which the fluid is irrotational. 
(Throughout this paper, the fluid is assumed inviscid, incompressible, two- 
dimensional, unforced, and unbounded.) The strip is viewed in a reference frame in 
which the centreline position of the strip is motionless, and only the component @ of 
the velocity (ti, U )  parallel to the x-axis (the axis of the strip) is non-zero ; = T &A 
above and below the strip respectively, and within the strip, E = -wy. 

The linear stability of this equilibrium is obtained by adding small, normal-mode 
disturbances 

to the upper and lower boundaries of the strip, linearizing the equations of motion 
(the Euler equations), and forcing continuity of the perturbation cross-strip velocity 
v and pressure p a t  each of the boundaries. Equivalently (and more simply), one can 
begin directly from the equations of motion expressed in terms of contour integrals 
along the two interfaces of vorticity discontinuity (Zabusky, Hughes & Roberts 
1979). In either case, one obtains two coupled equations for the complex amplitudes 
v * >  

y*(x,t) = Re[$+exp(ikx-iat)] - (k > 0) 

$+++e-k”- = 0, (1) 

whose solution requires that the eigenvalue cr take the value 

cr(k) = &$[( 1 - kA)2-e-2’Cd]a. (3) 

Disturbances with non-dimensional wavenumbers kA between 0 and 1.278 46454 . . . 
are unstable, and the most unstable mode occurs for kA = 0.796 812 1 3 . .  . for which 
Im (r) = 0.201 18558 ... o. 

Consider next the effect of adverse shear. The equilibrium flow in this case departs 
from that above simply by the addition of uniform shear, WAY, everywhere and 
parallel to the axis of the strip. Note, in particular, that the equilibrium velocity Q 

within the strip now assumes the form @ = - w (  1 - A )  y. Linear stability is determined 
in precisely the same fashion as above. The complex amplitudes 9, - satisfy 

whose solution now requires that the eigenvalue cr takes the value 

~ ( k ,  A )  = ++w[(  1 - kA( 1 - A ) ) 2  -e-21cd]~. (6) 
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One can immediately conclude that there is stability if A 2 1, i.e. if the adverse 
shear exceeds the vorticity jump crossing into the strip, because then the quantity 
within the radical in (6) cannot be negative for any value of the wavenumber k .  
Physically, values of A 2 1 correspond to a reversal of the sign of the mean velocities, 
a, on the two interfaces, and this reversal makes it impossible for waves of any 
wavelength to stay in step with one another (see $ 6 b  of Hoskins, McIntyre & 
Robertson 1987). 

More details of the dispersion relation (6) are discussed in the following section, so 
only a brief examination is given here. When A is very nearly unity, say A = 1 -e, 
e $ 1, the mode which is most unstable has kA z 1/e, corresponding to a small 
wavelength, and I m  (a)  z &oee-l/f,, corresponding to a vanishingly small growth rate, 
and the range of unstable wavenumbers shrinks to 1 -e-'I6 < ekd < 1 +e-l/', 
approximately. That is, when the net shear within the interface is very weak, only 
waves with small wavelengths, waves that propagate at very nearly the mean flow 
speed a t  the two edges of the strip, can stay in step with one another and therefore 
cause instability. But because the waves have such small wavelengths, their mutual 
interaction is extremely weak (like e-lcd for k A  4 l) ,  and therefore the growth rates 
are practically negligible. 

3. More general cross-strip distributions of vorticity 
How do the results of the previous section carry over to strips whose vorticity 

distributions are not uniform ? In  this section, we consider the linear stability of a 
particular class of distributions and afterwards hypothesize the linear stability of 
other classes. 

In  the absence of adverse shear, the equilibrium vorticity profile my) is taken to 
be uniform and equal to w for JyI < ad and Gaussian, 

wexp ( -  (lul -a42/e2) ,  

for IyI > ad.  The constant a is chosen so that the circulation within the strip is the 
same as that for the uniform-vorticity strip considered in the previous section, and 
this requires a = +( 1 -rife). The distribution is entirely Gaussian when 6 = l/& = 
0.564 189. .., while it is entirely uniform when e = 0. 

Actually, this distribution of vorticity is modified slightly in order to simplify the 
stability problem. The continuous distribution is replaced by m = 32 discrete steps 
symmetrically located to either side of the strip's centre. The vorticity jumps by an 
equal amount, w/m, across each of these steps. Half of the steps lie, in cquilibrium, 
a t  the positions 

yi= [ a+€ ( -log (nl+nt-j))ld ( j  = 1,2, ..., m), (7 )  

FIGURE 1. A contour-surgery calculation of a free vortex having an initially elliptical distribution 
of vorticity (see Dritschel t Legras 1989). The vorticity distribution consists of 8 equal steps with 
vorticity increasing inwards to a value of 2~ a t  the centre. Time advances to the right and 
downwards. The vortex initially ejects two broad filaments of vorticity, which subsequently thin 
as a result of the straining action caused by the differential rotation about the core of the vortex. 
The filaments become progressively more aligned with the predominantly circular flow field, and 
resist rolling up by virtue of the flow about the core. Where and when one does see enlargements 
along the filaments, the cause is not the classical Rayleigh instability, but the reaction to the strong 
differential rotation carrying around the parts of filaments close to the vortex faster than the parts 
further out; otherwise, the cause is related to the slight but persistent elliptical shape of the interior 
core. 
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and the other half lie a t  the symmetrical positions - yi. The associated equilibrium 
along-strip velocity profile ~ ( y )  is obtained by integrating the (negative of the) 
vorticity across the strip. Thus, in a frame of reference for which the centre of the 
strip is stationary, the velocity a a t  y = yj, aj, is given by the recursive formula 

tij = aj-l-( m + l - j  )(y,yj-l)w (ao = yo = 0) .  

u at y = - yj is simply the opposite of tij. 
To include adverse shear, it is only necessary to augment gj by wAyj.  
Linear stability is determined by a way precisely analogous to that outlined in the 

previous section. To the position of each step & y j ,  we add a disturbance of the form 

yJx, t )  = Re[ti jexp (ikx-id)] (k > 0). 

Upon linearizing the equations of motion, one obtains a set of 2 m  coupled equations 
for the complex amplitudes tki 

whose solvability hinges on being determined as an eigenvalue. In  general, u could 
take any one of as many as 2m distinct values corresponding to 2 m  distinct modes. 
In  the following, though, attention is restricted only to the mode with the largest 
growth rate. 

A comparison of linear stability characteristics is next made between three 
distributions of vorticity, differentiated by the value of E which gives a measure of 
the reciprocal steepness of the vorticity gradients. The first distribution has E = 0 - 
this is just the uniform-vorticity case discussed in the previous section. The second 
and third distributions have E = 0.2 and 0.5 respectively, the latter distribution, 
being nearly Gaussian, is the least steep. 

The stability characteristics of the three distributions are compared on the basis 
of the maximum growth rates for a given value of non-dimensional adverse shear A ,  
and the corresponding dimensionless wavenumber k, A which gives rise to  the most 
unstable mode. The maximum growth rate as a function of A for the three 
distributions is plotted in figure 2 ( a ) .  All of the distributions are stable for A 2 1. 
What is most surprising though is that  the three curves are very similar. The small 
discrepancies near A = 1 arise because, unlike in the case of the uniform-vorticity 
distribution, non-uniform distributions allow for internal modes of instability. This 
is most easily seen in figure 2 (b)  which plots k, A versus A for the three distributions. 
The rough variation of the curves for E = 0.2 and 0.5 as A approaches unity reflects a 
competition between various modes of instability having different internal 
structures. 

The results of figure 2 ( a )  suggest a certain ubiquity to the pattern of growth rate 
versus adverse shear. Similar stability results are therefore hypothesized for all other 
' one-humped ' distributions of vorticity. The fact that stability always results when 
the adverse shear equals or exceeds the maximum vorticity anomaly in the flow is 
explained below in $ 5 .  
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FIGUKE 2. (a )  The maximum dimensionless growth rate c? = Im (cr /w)  versus the dimensionless 
adverse shear A for three cross-strip profiles of  vorticity : E = 0 (solid line), E = 0.2 (dashed line), and 
E = 0.5 (dotted line). (b )  The dimensionless wavenumber k,d of  maximum instability versus the 
dimensionless adverse shear A for three cross-strip profiles of vorticity (same line coding as in a). 

4. Circular strips of vorticity 
The strips of vorticity which are produced from vortex interactions in general wind 

around intense coherent structures, and so retain a curved shape. Do the results for 
straight strips continue to apply in this case ? This question is addressed here by 
examining the stability of a thin circular strip with uniform vorticity in the presence 
of adverse shear. 

Consider the basic state defined by a ring of uniform vorticity w bounded inside by 
the circle r = a and outside by the concentric circle r = 6. Adverse shear is introduced 
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by situating a point vortex of circulation r a t  the origin. The point vortex is meant 
to represent an intense coherent vortex lying within the ring. The question as to 
whether we are missing out on some possible instabilities by not giving the central 
vortex internal degrees of freedom is discussed further below. 

A uniformly rotating frame of reference is chosen so that the two edges of the strip, 
in equilibrium, rotate a t  the same rate but in opposite directions. Then, the outer 
edge rotates a t  the rate 52 = ~( 1 - 2)  ( 1  - A )  where (z = a/b and 

is the dimensionless 'adverse shear'. Thus, a sufficiently strong central vortex can 
overcome the shear due to the strip alone (the vortex can reverse the angular 
velocities on the inner and outer edges of the strip). 

Linear stability is determined by adding disturbances of the form 

~ ~ ( 8 ,  t )  = Re [@+ - exp (im#-icrt)] (m = 1,2 ,3 ,  ...) (11) 

to  the outer and inner edges of the ring, respectively, linearizing the equations of 
motion, and solving a two-by-two determinant for the eigenvalue u. The result is 

f7 = *gw([l-+m(l-(z2)(1-/1)]2-CZ2m}~. (12) 

It is easy to see that A 2 1 stabilizes the ring regardless of the value of 
6 (0 < ci; < 1) .  And, in the limit of a thin ring, A = b-a  6 a,  one obtains precisely the 
same dispersion relation as governs a straight strip of vorticity, with the 
identification k = m/a. The stability of a thin circular strip is not therefore 
essentially different from that of a straight strip. 

A point vortex stabilizes a circular strip of vorticity by reversing the angular 
velocity shear across the strip. Analogously, adverse shear stabilizes a straight strip 
by reversing the linear velocity shear across the strip. The fact that the stabilizing 
shear flow is irrotational in one situation but rotational in the other has no affect on 
the stability results. 

Consider next replacing the central point vortex by a finite-area vortex of uniform 
vorticity wo.  In  equilibrium, the edge of the vortex is chosen to lie a t  r = R < a < b, 
a and b being the inner and outer edges of the strip as before. Unlike the point vortex, 
a finite-area vortex may now change its shape in response to the strip, and there 
arises the possibility of additional instabilities. 

The linear stability of this flow is most easily discussed in terms of the general 
equation governing the stability of all circularly symmetric flows with piecewise- 
constant vorticity. Let r j ,  j = 1,2 ,  . . . denote the equilibrium radial positions of the 
boundaries of vorticity discontinuity, with rl < r ,  < ..., and let 6, denote the jump 
in vorticity crossing r = ri inwards. Then the stability of small disturbances of the 

(13) 
form 

is determined by solving the following eigenvalue problem : 

q j ( # , t )  = Re[.ljjexp(imB-icrt)] (m = 1 , 2 , 3  ,...) 

(a-m52j)~j+~C&llmlj . l j1  = 0, (14) 
1 

where sZj denotes the equilibrium angular velocity a t  9' = r j ,  and ImLj  = ( r j / rL)m-l  
when j < 1 and Imlj  = ( r l / r j )m+l  when j 3 1. 

For the example flow above, r ,  = R, r ,  = a and r3 = b while 2, = wo, G2 = - w  and 
3, = w .  A uniformly rotating frame of reference is chosen so that Q3 = -52, = 52 = 
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+(l - (a /b )2 )  ( I  - A )  with A = woR2/wa2 (cf. (10) in which r = nw0R2). In  this frame, 
SZ, = $(wo - w A )  -Q. The eigenvalue a satisfies a cubic equation depending essentially 
upon the four parameters m, a/b ,  R /a ,  and w o / w ,  and no attempt is made to discuss 
the full spectrum of behaviour in this four-dimensional space. Instead, attention 
is restricted to the thin-strip limit, A = b-a 4 a-R. Upon introducing the 
dimensionless quantities 

the cubic equation may be written 

(6 - 6) (62- (1 - p)2 +a) + y(  (1 -a)  (6 + 1) - (1 + a )  p) = 0. (15) 
Two limits of (15) are examined in detail. In  the first, K (=  m d / a )  = O(1) so 

that m 9 1. I n  this limit, y = ~ l ( R / a ) ' ( ~ - l )  is negligible by virtue of the fact that 
A < a-R, assuming A is not large, and one obtains the same stability results as in the 
case of a straight strip in uniform shear (the first example of the previous section). 
A third, neutral mode (6 = Q) is present describing the rapid propagation of waves 
on the boundary of the central vortex. 

In  the second limit considered, K 6 1 so that m is not large and therefore y cannot 
be neglected. Curious behaviour is found to occur for small Q, when (R/a)' x 
1 - (l /m). Setting fi = C K ~ ,  one can prove that c < 3(yA/2); results in instability, with 
maximal instability occurring at G = 0 to the tune of Im (a) = a .\/3w(2yA~)f. Thus, 
for a given size of the central vortex, there may exist instabilities, involving the 
amplification of disturbances of approximately equal ma nitude on the strip and on 
the central vortex, growing at a rate proportional to wAa(A/a) i .  The dependence of 
(T on the third root of the non-dimensional strip thickness, A l a ,  implies, in practical 
situations, that even an extremely thin strip can excite sizable growth rates, a t  least 
relative to the strip's own vorticity (a nonlinear calculation of this instability is given 
in $6). However, relative to the typically much greater vorticity within the central 
vortex, these growth rates are small. 

6 

5. Sdcient conditions of linear stability 
Following Rayleigh (1894), Fjortoft (1950) derived the following sufficient 

condition of the stability of parallel flow. Linear stability is assured so long as there 
exists a uniformly translating frame of reference such that the zonal velocity ~ ( y )  

(16) 
satisfies 

everyhwere. For piecewise-constant vorticity, qu is a series of delta functions, 
- Gj S(y - yj),j = 1,2, . . . , but (16) still implies stability as long as aj Gj 2 0 for all j. 

This sufficient condition for stability is in fact satisfied for the parallel basic flows 
considered in $32 and 3 when the dimensionless adverse shear A 2 1, i.e. when the 
ratio of the adverse shear to the peak vorticity anomaly is a t  least unity. 

Arnol'd (1965) further generalized Rayleigh's and Fjortoft's results to include wide 
classes of non-parallel flows. For circularly symmetric basic flows, the sufficient 
condition for linear stability is that the angular velocity a(r), in Some uniformly 
rotating reference frame, must satisfy 

@auy = -aqy 2 0 

f2qr 2 0 (17) 
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everywhere. For piecewise-constant vorticity, this condition becomes aj Gj .c 0 for 
all discontinuities j. 

This condition explains why a sufficiently strong point vortex can stabilize a 
circular strip of vorticity : the differential rotation arising from the point vortex 
overcomes the strip’s own opposing differential rotation, so that the inner edge of the 
strip rotates faster than the outer. But note that the condition for stability is never 
satisfied when the strip surrounds a finite-area vortex, the case considered in the 
second part of the previous section. Although this does not imply instability, the case 
considered demonstrates that instability can indeed occur. 

6. Nonlinearity 
In this section, direct numerical calculations are used to examine the nonlinear 

development of the linearly unstable flows considered in $ $ 2 4 .  The calculations were 
performed using a numerical technique specifically designed for piecewise-constant 
vorticity called ‘contour surgery ’ (see Dritschel 1988a for details regarding basic 
parameters, e.g. the time step, and accuracy). The technique is a variant and 
refinement of the contour-dynamics methods pioneered by Zabusky et aE. (1979). 

In the case of a straight, uniform strip of vorticity, a series of calculations was 
performed to determine the nonlinear development of initially small, unstable 
disturbances for different values of the ratio A of adverse shear to vorticity. Each 
calculation was performed in a periodic domain of length 2x and began with the most 
unstable eigenmode for a given value of A .  The wavenumber of the disturbance k 
always equals unity, the width of the undisturbed strip d ( A )  is chosen from figure 
2 (b)  (k, = l ) ,  and the amplitude of the disturbance (on both interfaces) is chosen to 
be 0.054. 

In  all of the calculations, accuracy is gauged by measuring the accumulative error 
in the conservation of area (circulation) over the course of each calculation (see 
table 1) .  A sense of the passage of time in a calculation can be appreciated by noting 
that the vorticity in the strip takes the uniform value 2x. The numerical algorithm 
parameters (see Dritschel 1988a) are At = 0.05, ,u = 0.04, and 6 = &z = 0.0002, 
except in one case when ,u = 0.03 is used to verify that the numerical results are 
reproducible. 

Several different nonlinear developments are observed to occur depending on the 
adverse shear-vorticity ratio A .  For values of A between 0 and about 0.21, the strip 
of vorticity destablizes by rolling up into a string of vortices (see figure 3 for the case 
with A = 0, or no adverse shear, and compare with figure 4 which has A = 0.2). An 
active field of smaller strips or filaments surrounds and interacts with the largest 
vortices. Note in particular the prominent roll-up occurring in the case with A = 0.2 
and the ‘collision’ between parts of the strips and the vortices in the case with 
A = 0. 

Subsequently, the vortices would begin to ‘pair’ or merge (see Aref & Siggia 1980; 
Aref 1983 ; Ho & Heurre 1984; for theoretical considerations, see Pierrehumbert 
& Widnall 1981). This stage of the evolution is, however, not allowed by the con- 
straint of periodicity imposed on these calculations. Even so, a straightforward 
extension of Lamb’s (1932) analysis for the linear stability of a row of point vortices 
presented in Appendix A support the idea that adverse shear inhibits pairing, when 
A 2 0.1168 ... . 

A second regime sets in for A between 0.21 and 0.45 (approximately). A calculation 
with A = 0.23 is illustrated in figure 5 .  The initial roll-up does not manage to break 
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Figure showing Duration 
calculation of calculation 

3 8.0 
4 11.0 
5 11.5 
6 11.5 
7 11.0 
8 20.0 
9 50.0 

10 9.5 
11 23.0 
12 5.0 

Phase error 
(degrees) 

0.014 
0.021 
0.029 
0.059 
0.031 
0.040 

0.041 (0.020) 
0.012 
0.012 
0.003 

TABLE 1. Basic diagnostics of the calculations shown in this paper. Additional periodic calculations 
which were performed but not listed above include A = 0.21,0.22,0.24,0.45,0.64,0.7 and 0.8. The 
phase error (eC) roughly measures the accumulative error in the lack of conservation of basic 
integral constants (e.g. circulation and angular momentum). See Dritschel (1988a, $4) for a 
discussion of errors and for the definition of eC in the non-periodic planar case. For the definition 
in the periodic case, see Appendix C of Dritschel (1988~). The two entries for figure 9 above 
correspond to calculations with ,u = 0.04 and 0.03 respectively. 

the strip into a row of vortices ; rather, the shear overcomes the roll-up and begins 
to extend each enlarged region of vorticity. Eventually, roll-up does occur on a much 
smaller scale a t  the places where the strip folds back on itself. At a still larger shear, 
A = 0.33, figure 6, even these secondary roll-ups are inhibited. In this regime, there 
is a competition between the formation of vortices by the instability mechanism of 
the strip and the destruction of vortices by the shear. While the strip is linearly 
unstable, it cannot manifest this instability by forming a row of vortices because the 
shear is too great. The fact that excessive shear precludes the formation of vortices 
is evidently related to the fact that an isolated (elliptical) vortex in pure shear will 
be extended indefinitely if A > 3-2 4 2  = 0.17157 ... (Moore & Saffman 1971 ; Kida 
1981). For a period array of vortices, the calculations suggest that the adverse shear 
must be slightly larger, say A = 0.21, to initiate extension. Note, however, that the 
extending strips will not continue to extend, apparently passively, as in figure 6, for 
they become susceptible to further strip instabilities once sufficiently aligned with 
the shear. On the basis of the results presented in Appendix B, it is likely that each 
thin strip in figure 6 will eventually fracture into a band of strips (one strip with 
many bends is intended) just as the primary strip in figure 6 did. Each of these 
secondary strips may likewise fracture again, and so on. 

A third regime is observed for intermediate values of the adverse shear, 
0.45 < A < 0.65. A calculation with A = 0.5 is shown in figure 7. Vortices begin to 
form, are extended, and then torn into two. At the end of the calculation, the vortices 
begin to pair again, but not with the vortices they originally separated from. A great 
deal more is happening with the thinner strips of vorticity surrounding the vortices, 
including brief roll-ups. Near the high-shear end of the regime, A = 0.6, figure 8, the 
evolution is less disruptive. The strip is no longer extended as a whole, rather 
filaments are shed from the crests of the waves on the two interfaces. The waves then 
diminish in amplitude, but ‘filamentation ’ continues to occur, with filaments on both 
interfaces being shed repetitively to the inner and outer sides of the strip (cf. figures 
5 and 6 of Dritschel 1988~).  Toward the end of the calculation, a large-scale wave 
pattern re-emerges and temporarily quells filamentation. The resemblance of this 
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vorticity ( A  = 0). Two periods of the flow are shown, but only one was calculated. Time advances 
downwards and to the right. See table 1 for further details. 

large-scale wave to that occurring earlier in the evolution suggests that waves will 
continue to decay, grow, and break, causing the interface (understood in an x- 
averaged sense) to spread further and further into the surrounding fluid. 

In the fourth and final regime, 0.64 < A < 1 ,  no filament shedding is observed (see 
figure 9) through the duration of the calculations ( t  = 50). Initially, the disturbance 
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FIQURE 4. As in figure 3 but with A = 0.2. 

amplifies until a trochoid-like wave pattern is established on the two interfaces, then, 
surprisingly, the waves decay until an almost unperturbed state is reached. There is 
then a long lull until the trochoid-like wave pattern reappears, with the same 
amplitude, and again the waves decay, This was such an unexpected result- 
particularly with regard to the absence of any wave breaking - that the calculation 
was repeated a t  higher resolution. The two calculations are superimposed a t  the time 
when the wave reaches maximum amplitude for the second time, a t  t = 45, showing 
the degree to which the calculation is reproducible. 
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FIGURE 5.  As in figure 3 but with A = 0.23. 

Calculations with A closer to unity show less amplification - the maximum wave 
slope is less and the peak curvature is less. This is not to say that the evolution is 
exactly time-periodic ; in fact, if it were possible to calculate the evolution with much 
higher resolution for much longer in time, one might well see filamentation occurring 
on a scale small compared with the wavelength (see Dritschel 1988c for support of 
this conjecture). 

We next consider a single calculation in which the vorticity within the strip is not 
uniform. I n  this calculation, three distinct levels of vorticity are used, +, @, and o, 
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FIGURE 6. As in figure 3 but with A = 0.33. 

where w = 2a is the vorticity at the centre of the strip. The y-positions of the 
contours of vorticity discontinuity, in equilibrium, are taken to be yk j  = &$A( i j ) i ,  
j = 1,2 ,3 ,  and the disturbance shifts each y-position by the amount O.ly,*. The 
disturbance and strip width are chosen to correspond with the most unstable linear 
eigenmode for the uniform strip when A = 0.2. Figure 10(a) depicts the evolution. 
The dramatic difference between this and the uniform-vorticity case (cf. figure 4) is 
the ‘stripping’ of the weakest levels of vorticity from the forming vortices. By the 
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end of the calculation, almost all of the vorticity in the lowest two levels of vorticity 
has been stripped away into the fluid on either side of the strip. The fact that large- 
scale shear or strain efficiently removes weak vorticity and leaves vortices with 
gradients a t  their outer edge many orders of magnitude greater than in the initial 
state has been demonstrated in the case of isolated vortices (see Legras & Dritschel 
1989 and $7 below). Essentially the same mechanism, it is argued, intensifies 
vorticity gradients in destabilizing strips. 
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FIGURE 7. (a)  As in figure 3 but with A = 0.5. ( b )  An enlarged view of the flow at t = 1 1 .  

Finally, we consider a circular strip of vorticity. Of particular interest is the case 
when a circular strip just encloses a central, finite vortex, in view of the instability 
uncovered in $4. Initially, the central vortex is circular (apart from numerical noise) 
with radius R = 1 and vorticity wo equal to that in the surrounding strip, i.e. 
w,, = w = 2n, and the strip lies between the radii a = 1.08 and b = 1 .lo. The evolution 
is illustrated in figure 11. The time difference At = 2 equals the rotation period, in 
equilibrium, of fluid particles along the edge of the central vortex. By ten such 
rotation periods, the character of the instability discloses itself. Not only does the 
strip begin to ‘roll-up’, in the sense opposite to that which would occur in the absence 
of a central vortex, but steep waves also grow from the boundary of the vortex. 
These waves subsequently tilt over and exude filaments of vorticity which then 
elongate in the differential rotation. Thereby new strips are born, and the flow 
continues to evolve with rapidly growing complexity. Despite the erosion of the 
central vortex by ‘ filamentation ’, this instability can never change the gross circular 
nature of the flow (Dritschel 1988d, $5).  

7. Discussion 
Thin strips being wound around intense vortices often behave quasi-passively 

because of the nature of the flow field in the immediate vicinity of the vortices. The 
strong differential rotation associated with the flow field at first thins strips of 
vorticity and aligns them with the flow. As the strips align with the flow, the rate of 
stretching continually diminishes, and eventually this stretching is insufficient to 
prevent instabilities on the basis of strain alone (Dritschel et al. 1989). But the effect 
of differential rotation continues to exert its influence, in the form of adverse shear, 
by opposing a strip’s own self-induced angular velocity shear. Linear stability is 
assured if the adverse shear a t  least cancels the strips self-induced shear ; nonlinear 
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FIGURE 8. As in figure 3 but with A = 0.6. 

stability appears to require significantly less adverse shear. On the basis of the 
nonlinear results, it appears that a thin strip with (peak) vorticity w at  a radial 
distance r from the centre of an intense vortex will remain strip-like so long as the 
circulation-like quantity nr2w does not exceed 1.5 times the circulation of the vortex. 

However, if a strip is too close to an intense vortex, an instability takes place in 
which parts of the strip are pulled toward the vortex while the vortex itself develops 
steep boundary waves. These waves then proceed to generate filaments repeatedly 
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1 10 

FIGURE 9. As in figure 3 but with A = 0.65. The second set of contours in the plot for t = 45 were 
obtained at  higher resolution (p = 0.03 instead of /*. = 0.04). The difference between the two 
calculations is largely a phase error. 

(Dritschel 1988~)  thereby continually adding new strips to the flow at  the edge of the 
vortex. The new strips themselves may eventually go unstable only to leave the edge 
of the vortex with yet more strips. It is thought that this complex behaviour reduces 
vorticity gradients, in a coarse-grained sense, a t  the edge of the vortex and makes 
the vortex less sensitive to small disturbances such as nearby strips (Dritschel1988c, 
$6, 1988d). 
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FIGURE 10. As in figure 4 but with three levels of vorticity. 
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FIGURE 11. A calculation of the nonlinear stability and evolution of a thin strip of vorticity 
surrounding a central vortex of the same uniform vorticity. Time advances to  the right and 
downwards. The parametersy = 0.02,6 = 0.00005, and At = 0.05. See table 1 for error information. 

So far, no attention has been given to the effect of distant vortices. The large-scale 
strain and shear arising from distant vortices need not be great for there to be a 
significant effect on the flow around a particular vortex. It has been known for some 
time that a uniform strain of only 15% of the vorticity applied to a uniform vortex 
will cause the entire vortex to elongate irreversibly (Moore & Saffman 1971 ; Kida 
1981 ; Neu 1984). As noted in the previous section, adverse shear exceeding about 
1 7 %  of the vorticity has a similar effect. And so i t  is perhaps not surprising that 
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somewhat weaker strain or shear can tear away (strip) practically all of the weakest 
levels of vorticity from the outer edges of any vortex having a continuous 
distribution of vorticity (Legras & Dritschel 1989). This ‘stripping’ can leave the 
surviving part of the vortex with gradients of vorticity four to six orders of 
magnitude greater a t  its edge than it had initially, and after a time of the order of 
only one rotation of the vortex ! Of course, the strain rate due to distant vortices is 
not constant in turbulent flows, and vortices experience a variety of external flow 
conditions. Nevertheless, weak large-scale strain and shear offer an efficient way to 
remove bundles of strips encircling intense vortices and provides a very effective way 
to intensify vorticity gradients (cf. Melander et al. 1 9 8 7 ~ ) .  

The strips pulled away from vortices can occasionally become unstable when they 
reach regions of the flow with favourable strain and shear, to produce the familiar, 
but in practice seldom noticeable shear instability associated with an isolated strip 
of vorticity. Some of the recent very high-resolution numerical calculations of two- 
dimensional turbulence have indeed detected this instability (Juckes & McIntyre 
1987, figure 4e;  B. Legras, personal communication 1987), but it appears to  be rare. 
Usually, strips do not have sufficient time to behave as if they were in isolation. The 
local, large-scale strain field typically changes sufficiently rapidly to keep a 
particular mode of instability from growing very much (cf. Dhanak 1981 ; Dritschcl 
et al. 1989). 

Shear instability is most likely to occur with strips whose vorticity values are 
comparable with the peak vorticity values in the flow and particularly to strips being 
wound around vortices with opposite-signed vorticity. In this latter case, the shear 
due to the vortex is no longer adverse, but in the same sense as that in the strip, and 
this causes the strip to be even more unstable than when the strip is in isolation (see 
figure 12). But the fact remains that shear instability has been rarely observed in the 
high-resolution physical and numerical experiments cited in $1 .  The thin bands of 
vorticity that do get wrapped around vortices with opposite-signed vorticity 
probably become extremely thin as a result of the accumulative stretching 
experienced during their birth from a vortex of the same-signed vorticity, their 
removal from the parent vortex by the strain field of distant vortices, and their 
eventual capture by a vortex with opposite-signed vorticity. By the time a strip is 
ready to undergo its own instability, if the strip has not already been removed again 
by the strain field of distant vortices, the strip would probably be overcome by 
viscous effects (or be lost in a numerical model’s truncation). 

This and the complementary study (Dritschel et al. 1989) on the effects of large- 
scale shear and strain on the behaviour of thin strips or filaments of vorticity in 
conjunction with results on gradient intensification through vortex ‘stripping ’ 
(Legras & Dritschel 1989) and the ‘filamentation’ of steep vorticity gradients 
(Dritschel 1988c), lend considerable support to one part of the classic Batchelor- 
Kraichnan two-dimensional turbulence scenario (Batchelor 1969 ; Kraichnan 1967), 
namely the idea that small scales behave quasi-passively on the whole. Together with 
the more recently recognized role of concentrated, sparsely spaced vortices (Fornberg 
1977; Basdevant et al. 1981 ; MeWilliams 1984 among others), a picture is emerging 
wherein the dynamics of the concentrated vortices, their collisions, their deformation 
by the interaction with distant vortices, and their evolving internal structure, 
comprises the most visible and important element in a turbulent flow. Such a picture 
is likewise suggested by the very high-resolution calculations of Babiano et al. (1987), 
Benzi et al. (19871, and Legras et al. (1988) and envisioned by Melander et al. 
(1987a, b,  c) who have examined the dynamics of one or two vortices in isolation. 
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strip in ‘cooperative shear ’, A = - 1 .  
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FIGURE 13. The dimensionless growth rate versus dimensionless wavenumber kA for two strips 
separated by a distance D = 5 from centre to centre in adverse shear of A = 0.33. In the right lobe 
of instability, the structure of an eigenmode disturbance on either strip is nearly identical to that 
on a single strip in complete isolation. However, in the left mode of instability, the two strips 
interact strongly. 
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were performed on the Cray X-MP/48 a t  the Rutherford Appleton Laboratory under 
the UK Universities Global Atmospheric Modelling Project, with the support from 
the Natural Environmental Research Council. 

Appendix A. Stabilizing a row of vortices with adverse shear 
It is shown that the vortices that roll-up from the strip instability when A < 0.21 

do not subsequently begin pairing when A > 0.1 168. .., under the assumptions made 
below. 

Suppose A c 0.21 and the most unstable eigenmode overwhelms all others to 
produce a row of vortices like those shown in figures 3 and 4. Assume that all of the 
vorticity in each period of the strip (of wavelength a = 2n/k,and initial width A ,  
where the product k, A is a function of A as given in figure 2 b)  ends up in a single 
vortex (in each period) and that the resultant row of vortices, insofar as the following 
linear stability analysis is concerned, can be approximated by a row of point vortices, 
each point vortex having the same circulation K = wAa as each finite vortex. 

The linear stability analysis is a minor modification of that presented by Lamb 
(1932, pp. 225-226). Referring to his analysis, one simply adds the term WAY,, to the 
right-hand sides of his equations involving dx,/dt (equations (7)  and (9)), and w A p  
in a similar way to dolldt (in equation ( l l ) ) ,  this latter modification showing that 
stability results if wA exceeds the maximum of A ,  or 
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FIGURE 14. (a )  The maximum dimensionless growth rate as a function of A and D for two strips. 
The wavenumbers k A  > 10 are excluded. Their inclusion would cause the vertical contours in the 
lower right-hand part of the picture t o  intersect the lower horizontal axis (these modes are 
characterized, principally, by the excit,ement of the thin gap between the two strips in the limit 
D --f 1 ) .  Xote that  the sufficient condition for stability reviewed in $5 is never satisfied for this flow. 
(6) The dimensionless wavenumber of the most unstable eigenmode. 
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Since k, A is itself a function of A (from figure 2b) ,  one can solve for the value or 
values of A when A = ik,,, A .  One finds two roots, the smallest a t  A = 0.116 806 34. .  . 
and the largest at A = 0.85388480 ... . Between these two values of A ,  there is 
neutral stability; hence, the vortices that form as a manifestation of the most 
vigorous linear instability of a vortex strip do not subsequently begin to pair if 
A > 0.1 168.. . . Since strips with values of A exceeding the larger root, A = 0.8538 . . . , 
show little disruption as a result of their linear instability (certainly, they do not 
break up), this larger root has no physical significance. 

Appendix B. The stability of two parallel strips in adverse shear 
The question of whether the secondary strips in figure 6 eventually fracture into 

tertiary strips, and so on, is examined here. We consider the simplest possible 
problem of two parallel strips, each of vorticity o and width A separated by a 
distance DA from centre to centre. We also suppose there is a background adverse 
shear present, with shear Aw. In  figure 6, A = 0.33, and it is estimated that D = 5. 

The dispersion relation for the eigenfrequency u is straightforwardly obtained 
by a generalization of ( 9 )  along with a bit of algebra. With 6 =a/@, K = kA, 
a: = 1 - K A ( D -  l ) ,  ,8 = 2 ~ -  1 - K A ( D +  1 ) ,  and y = e-2K, stability is determined from 

163' - (a2 +/3' - 2y - yD-' + 2yD-  yDf') 46' 
+ (oLp+y)2-y~-'p~+ZyDp(a:-2)-y~+l(a-2)2 = 0. 

Figure 13 shows Im ($) versus K = LA for the case corresonding to figure 6. The 
second strip gives rise to a second mode of instability having longer wavelengths. For 
this mode, the two strips are strongly coupled. The more unstable mode a t  shorter 
wavelengths corresponds directly to the single-strip mode, and the two strips behave 
almost independently. Since this latter mode dominates, it is probable that the 
subsequent evolution in figure 6 will exhibit further strip fracturing. Although this 
argument depends upon the results for only two strips, it should be qualitatively 
correct for any number, as long as the distance between the strips is much greater 
than the width of the strips. 

More generally, figure 14 displays maps of the growth rate maximized 
over wavenumber and the wavenumber of maximum instability in the domain 
0 < A < 1 , 1  < D < 4. For large D, the results asymptote to those corresponding to 
a single strip, and for D = 1, the results apply to a single strip of width 2 4 .  The 
various lines of discontinuity evident in the map for k A  reflect crossovers from one 
type of mode t o  another. 
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